Geometry-aware Similarity Learning on SPD Manifolds for Visual Recognition
نویسندگان
چکیده
Symmetric Positive Definite (SPD) matrices have been widely used for data representation in many visual recognition tasks. The success mainly attributes to learning discriminative SPD matrices with encoding the Riemannian geometry of the underlying SPD manifold. In this paper, we propose a geometry-aware SPD similarity learning (SPDSL) framework to learn discriminative SPD features by directly pursuing manifoldmanifold transformation matrix of column full-rank. Specifically, by exploiting the Riemannian geometry of the manifold of fixed-rank Positive Semidefinite (PSD) matrices, we present a new solution to reduce optimizing over the space of column full-rank transformation matrices to optimizing on the PSD manifold which has a well-established Riemannian structure. Under this solution, we exploit a new supervised SPD similarity learning technique to learn the transformation by regressing the similarities of selected SPD data pairs to their ground-truth similarities on the target SPD manifold. To optimize the proposed objective function, we further derive an algorithm on the PSD manifold. Evaluations on three visual classification tasks show the advantages of the proposed approach over the existing SPDbased discriminant learning methods.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملOptimized Kernel-based Projection Space of Riemannian Manifolds
Recent advances in computer vision suggest that encoding images through Symmetric Positive Definite (SPD) matrices can lead to increased classification performance. Taking into account manifold geometry is typically done via embedding the manifolds in tangent spaces, or Reproducing Kernel Hilbert Spaces (RKHS). Recently it was shown that projecting such manifolds into a kernel-based random proj...
متن کاملA Riemannian Network for SPD Matrix Learning
Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting the Riemannian geometry of the underlying SPD manifold. In this paper we build a Riemannian network to open up a new direction of SPD matrix non-linear learning in a deep architecture. Th...
متن کاملA Riemannian Network for SPD Matrix Learnin
Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting Riemannian geometry of underlying SPD manifolds. In this paper we build a Riemannian network architecture to open up a new direction of SPD matrix non-linear learning in a deep model. In ...
متن کاملOnline Dictionary Learning on Symmetric Positive Definite Manifolds with Vision Applications
Symmetric Positive Definite (SPD) matrices in the form of region covariances are considered rich descriptors for images and videos. Recent studies suggest that exploiting the Riemannian geometry of the SPD manifolds could lead to improved performances for vision applications. For tasks involving processing large-scale and dynamic data in computer vision, the underlying model is required to prog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1608.04914 شماره
صفحات -
تاریخ انتشار 2016